Clone an undirected graph. Each node in the graph contains a label
and a list of its neighbors
.
Nodes are labeled uniquely.
We use#
as a separator for each node, and ,
as a separator for node label and each neighbor of the node. As an example, consider the serialized graph { 0,1,2#1,2#2,2}
.
The graph has a total of three nodes, and therefore contains three parts as separated by #
.
- First node is labeled as
0
. Connect node0
to both nodes1
and2
. - Second node is labeled as
1
. Connect node1
to node2
. - Third node is labeled as
2
. Connect node2
to node2
(itself), thus forming a self-cycle.
Visually, the graph looks like the following:
1 / \ / \ 0 --- 2 / \ \_/
思路:
题目的本质是图的遍历,可以DFS,也可以BFS,复制则是一个map的问题(label唯一)。map中的key对应原节点,value对应新建的节点。
先来看BFS的。BFS必然用到一个队列q,然后一个while循环,退出的条件是队列q为空。循环内,首先取出队列的头部节点tmp,接下来判断tmp是否已经出现在map当中。如果map中没有,则新建一个节点,同时用map关联tmp节点和新建的节点。这个判断很重要,最开始我没有这个判断,就会错,以题干的例子说明为什么错。感谢的指导。
首先访问节点0,新建节点0`,map<0, 0`>。然后0的第一个邻居节点1,这个节点在map中找不到,所以新建节点1`,关联map<1,1`>,节点1进入队列q,0`邻居节点1`。同理接下来0的第二个邻居节点2完成相同的操作。以上都是第一次while()的过程。接下来再判断while的条件,q非空,取q头部节点1,如果没有此时没有前述的判断,则又会新建一个节点1``,这个节点与map(1)对应的1`只是label一样,确是两个完全不同的节点。本来1`的邻居节点是2`,这样一次while之后其实是1``的邻居节点是2`,当然最后的结果就是错的。所以上面的判断其实是判断是否已经建立了此次访问的节点。
根据BFS,接下来是寻找节点的邻居节点。寻找邻居节点,当然还得要用到前面的那个判断思路,这样才能避免如果新建了一个节点1`,不至于又去建立一个全新的1``了。
再来看DFS。因为图没有完全独立的部分,所以只需对第一个节点进行深搜即可,只要一次神搜完成而不用判断是否有其余节点没有访问到。这里还是的用到前述的那个判断条件,道理类似。如果map中没有,那么就新建一个节点,同时关联原节点和新建的节点,在对原节点进行一次递归的DFS,返回的结果就是邻居节点;如果map中存在,说明节点已经被关联过了,只需返回关联的那个节点即可。
题解:
BFS
/** * Definition for undirected graph. * struct UndirectedGraphNode { * int label; * vectorneighbors; * UndirectedGraphNode(int x) : label(x) {}; * }; */class Solution {public: UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) { if(node==NULL) return NULL; unordered_map map; queue q; q.push(node); while(!q.empty()) { UndirectedGraphNode *tmp = q.front(); q.pop(); if(map.find(tmp)==map.end()) { UndirectedGraphNode *newnode = new UndirectedGraphNode(tmp->label); map[tmp] = newnode; } for(int i=0;i neighbors.size();i++) { UndirectedGraphNode *neighbor = tmp->neighbors[i]; if(map.find(neighbor)==map.end()) { UndirectedGraphNode *newneighbor = new UndirectedGraphNode(neighbor->label); map[neighbor] = newneighbor; q.push(neighbor); } map[tmp]->neighbors.push_back(map[neighbor]); } } return map[node]; }};
DFS
/** * Definition for undirected graph. * struct UndirectedGraphNode { * int label; * vectorneighbors; * UndirectedGraphNode(int x) : label(x) {}; * }; */class Solution {public: unordered_map map; UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) { if(node==NULL) return NULL; if(map.find(node)==map.end()) { UndirectedGraphNode *newnode = new UndirectedGraphNode(node->label); map[node] = newnode; for(int i=0;i neighbors.size();i++) newnode->neighbors.push_back(cloneGraph(node->neighbors[i])); return newnode; } else return map[node]; }};